Product Description

Product Description

Three-Phase Motor is an electric motor driven by a three-phase AC power source.
They are widely used as power sources for industrial equipment and machinery. Also called three-phase induction motors (induction motors), they are generally powered by a three-phase AC power supply of 200 V, 110V, 380V and so on.
Three-Phase Motors consist of a stator, rotor, output shaft, flange bracket, and ball bearings.

YVP Frequency Conversion Motor Series

YVP speed has become the popular way, can be widely used in various industries continuously variable transmission.
In the variable frequency motor speed control system, using power electronic inverter as a power supply is inevitable that there will be high harmonics, harmonic greater impact on the motor. Mainly reflected in the magnetic circuit and the circuit harmonic magnetic potential harmonic currents. Different amplitudes and frequencies of harmonic currents and magnetic flux will cause the motor stator copper loss rotor aluminum consumption. These losses of the motor efficiency and power factor reduction, the majority of these losses into heat, causing additional heating of the motor, causing the motor temperature increases, the increase in temperature generally 10~20%. As a result of electromagnetic interference power, conduction and radiation, the stator winding insulation aging, resulting in deterioration of the common-mode voltage and leakage current of accelerated beaning, bearing perishable, while the motor screaming. Since harmonic electromagnetic torque constant harmonic electromagnetic torque and vibration harmonic MMFs and rear rotor harmonic current synthesis. The torque of the motor torque will generate pulsating issued, so that the motor speed vibration is low.
Our produce YS, IE2, IE3, IE4 Series Universal three-phase asynchronous motor design, our main consideration is the motor overload, starting performance, efficiency and power factor. Another major consideration for non-sinusoidal motor power adaptability. Suppose the influence of higher harmonic current to the motor. Since the motor is increased when the working
Temperature of the low-frequency region, class F insulation dl ass above, the use of polymer insulation materials and vacuum pressure impregnation process, and the use of special insulation structure. Ln order to reduce the electromagnetic torque ripple, improve the precision mechanical parts to improve the quality level constant. high-precision bearing mute. n order to eliminate vibration motor, the motor structure to strengthen the overall design.

Operating conditions:

Ambient temperature: -15ºC<0<40ºC Duty:  S1 (continuous)
Altitude: not exceed1000m Insulation class:  B/F/H
Rated voltage: 380V, 220V-760Vis available Protection class: lP54/IP55
Rated frequency: 50HZ/60HZ Cooling method:  IC0141

Production Flow:


Product Overall & Installation Dimensions:


YVP B3 Series H63-180:

Frame size Installation Dimensions (mm)
A B C D E F G H K AB AC HD L
63 100 80 40 Φ11 23 4 12.5 63 7 135 120×120 167 260
71 112 90 45 Φ14 30 5 16 71 7 137 130×130 178 295
80 125 100 50 Φ19 40 6 21.5 80 10 155 145×145 190 340
90S 140 100 56 Φ24 50 8 27 90 10 175 160×160 205 390
90L 140 125 56 Φ24 50 8 27 90 10 175 160×160 205 400
100L 160 140 63 Φ28 60 8 31 100 12 200 185×185 240 430
112M 190 140 70 Φ28 60 8 31 112 12 230 200×200 270 460
132S 216 140 89 Φ38 80 10 41 132 12 270 245×245 315 525
132M 216 178 89 Φ38 80 10 41 132 12 270 245×245 315 525
160M 254 210 108 Φ42 110 12 45 160 14.5 320 335×335 450 850
160L 254 254 108 Φ42 110 12 45 160 14.5 320 335×335 450 870
180M 279 241 121 Φ48 110 14 51.5 180 14.5 355 370×370 500 880
180L 279 279 121 Φ48 110 14 51.5 180 14.5 355 370×370 500 980

YVP B5 Series H63-180:
 

C Installation Dimensions (mm)
D E F G M N P S T AC HD L
63 Φ11 23 4 12.5 115 95 140 10 3 120×120 104 260
71 Φ14 30 5 16 130 110 160 10 3.5 130×130 107 295
80M Φ19 40 6 21.5 165 130 200 12 3.5 145×145 115 340
90S Φ24 50 8 27 165 130 200 12 3.5 160×160 122 390
90L Φ24 50 8 27 165 130 200 12 3.5 160×160 122 400
100L Φ28 60 8 31 215 180 250 14.5 4 185×185 137 430
112M Φ28 60 8 31 215 180 250 14.5 4 200×200 155 460
132S Φ38 80 10 41 265 230 300 14.5 4 245×245 180 525
132M Φ38 80 10 41 265 230 300 14.5 4 245×245 180 252
160M Φ42 110 12 45 300 250 350 18.5 5 335×335 290 850
160L Φ42 110 12 45 300 250 350 18.5 5 335×335 290 870
180M Φ48 110 14 51.5 300 250 350 18.5 5 370×370 340 880
180L Φ48 110 14 51.5 300 250 350 18.4 5 370×370 340 980

YVP B14 Series H63-112:
 

Frame size Installation Dimensions (mm)
D E F G M N P S T AC HD L
63 Φ11 23 4 12.5 75 60 90 M5 2.5 120×120 104 260
71 Φ14 30 5 16 85 70 105 M6 2.5 130×130 107 295
80 Φ19 40 6 21.5 100 80 110 M6 3 145×145 115 340
90S Φ24 50 8 27 115 95 120 M8 3 160×160 122 390
90L Φ24 50 8 27 115 95 120 M8 3 160×160 122 400
100L Φ28 60 8 31 130 110 155 M8 3.5 185×185 137 430
112M Φ28 60 8 31 130 110 160 M8 3.5 200×200 155 460

 

Product Parameters

YVP 3000r/min 380V 50Hz:

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE FREOUENCY CONVERSION BLOWER
RATED TORQUE RATED TORQUE VOLTAGEV SPEED
KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn THREE PHASE SINGLE PHASE RPM
YVP-631-2 0.18 2800 65.0 0.80 0.53 0.61 2.2 2.2 380 220 2800
YVP-632-2 0.25 2800 68.0 0.81 0.69 0.85 2.2 2.2 380 220 2800
YVP-711-2 0.37 2830 70.0 0.81 0.99 1.25 2.2 2.2 380 220 2800
YVP-712-2 0.55 2830 73.0 0.82 1.40 1.86 2.2 2.3 380 220 2800
YVP-801-2 0.75 2840 75.0 0.83 1.83 2.52 2.2 2.3 380 220 2800
YVP-802-2 1.10 2840 77.0 0.85 2.55 3.70 2.2 2.3 380 220 2800
YVP-90S-2 1.50 2840 79.0 0.85 3.39 5.04 2.2 2.3 380 220 2800
YVP-90L-2 2.20 2840 81.0 0.86 4.80 7.40 2.2 2.3 380 220 2800
YVP-100L-2 3.00 2860 83.0 0.87 6.31 10.0 2.2 2.3 380 220 2800
YVP-112M-2 4.00 2880 84.0 0.88 8.22 13.3 2.2 2.3 380 220 2800
YVP-132S1-2 5.50 2910 85.0 0.88 11.2 18.0 2.2 2.3 380 220 2800
YVP-132S2-2 7.50 2910 86.0 0.88 15.1 24.6 2.2 2.3 380 220 2800
YVP-160M1-2 11.0 2930 88.0 0.89 21.3 35.9 2.2 2.3 380 220 2800
YVP-160M2-2 15.0 2930 89.0 0.89 28.8 48.9 2.2 2.3 380 220 2800
YVP-160L-2 18.5 2935 90.0 0.90 34.7 60.2 2.2 2.3 380 220 2800
YVP-180M-2 22.0 2935 90.0 0.90 41.3 71.6 2.0 2.3 380 220 2800

YVP 1500r/min 380V 50Hz:

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE FREOUENCY CONVERSION BLOWER
RATED TORQUE RATED TORQUE VOLTAGEV SPEED
KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn THREE PHASE SINGLE PHASE RPM
YVP-631-4 0.12 1360 57.0 0.72 0.44 0.84 2.2 2.0 380 220 2800
YVP-632-4 0.18 1360 60.0 0.73 0.62 1.26 2.2 2.0 380 220 2800
YVP-711-4 0.25 1375 65.0 0.74 0.79 1.74 2.2 2.0 380 220 2800
YVP-712-4 0.37 1375 67.0 0.75 1.12 2.57 2.2 2.0 380 220 2800
YVP-801-4 0.55 1405 71.0 0.75 1.57 3.74 2.2 2.4 380 220 2800
YVP-802-4 0.75 1405 73.0 0.77 2.02 5.10 2.2 2.4 380 220 2800
YVP-90S-4 1.10 1445 75.0 0.79 2.82 7.27 2.2 2.3 380 220 2800
YVP-90L-4 1.50 1445 78.0 0.79 3.70 9.91 2.2 2.3 380 220 2800
YVP-100L1-4 2.20 1440 80.0 0.81 5.16 14.60 2.2 2.3 380 220 2800
YVP-100L2-4 3.00 1440 82.0 0.82 6.78 19.90 2.2 2.3 380 220 2800
YVP-112M-4 4.00 1440 84.0 0.82 8.82 26.50 2.2 2.3 380 220 2800
YVP-132S-4 5.50 1440 85.0 0.84 11.70 36.50 2.2 2.3 380 220 2800
YVP-132M-4 7.50 1440 87.0 0.84 15.60 49.70 2.2 2.3 380 220 2800
YVP-160M-4 11.0 1450 88.0 0.85 21.30 72.40 2.2 2.2 380 220 2800
YVP-160L-4 15.0 1450 89.0 0.85 30.10 98.80 2.2 2.2 380 220 2800
YVP-180M-4 18.5 1455 90.5 0.86 36.50 121.40 2.2 2.2 380 220 2800
YVP-180L-4 22.0 1455 91.0 0.86 43.10 144.40 2.0 2.2 380 220 2800

YVP 1000r/min 380V 50Hz:  

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE FREOUENCY CONVERSION BLOWER
RATED TORQUE RATED TORQUE VOLTAGEV SPEED
KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn THREE PHASE SINGLE PHASE RPM
YVP-711-6 0.18 900 58.0 0.66 0.71 1.91 1.9 2.0 380 220 2800
YVP-712-6 0.25 900 59.0 0.68 0.95 2.65 1.9 2.0 380 220 2800
YVP-801-6 0.37 910 62.0 0.70 1.30 3.88 1.9 2.0 380 220 2800
YVP-802-6 0.55 910 65.0 0.72 1.79 5.77 1.9 2.1 380 220 2800
YVP-90S-6 0.75 930 70.0 0.72 2.26 7.70 2.1 2.1 380 220 2800
YVP-90L-6 1.10 940 73.0 0.73 3.14 11.2 2.1 2.1 380 220 2800
YVP-100L-6 1.50 940 76.0 0.76 3.95 15.2 2.2 2.1 380 220 2800
YVP-112M-6 2.20 960 79.0 0.76 5.57 21.9 2.2 2.1 380 220 2800
YVP-132S-6 3.00 960 81.0 0.76 7.40 29.8 2.2 2.1 380 220 2800
YVP-132M1-6 4.00 960 83.0 0.76 9.63 39.8 2.2 2.1 380 220 2800
YVP-132M2-6 5.50 960 84.0 0.77 12.9 54.7 2.2 2.1 380 220 2800
YVP-160M-6 7.50 970 86.0 0.78 17.0 73.8 1.8 2.1 380 220 2800
YVP-160L-6 11.0 970 87.0 0.79 24.3 108.3 1.9 2.1 380 220 2800
YVP-180L-6 15.0 970 89.0 0.81 31.6 147.7 2.1 2.1 380 220 2800

 

Certifications

Packaging & Shipping

Company Profile

TLWERK, established by the R&D, production and sales team with more than 10 years of technical experience, is a professional trade company. We focus on the R&D, technology and sales services of induction motors and motor power source systems, especially for the customized development of products according to the specific application requirements of customers. The products are produced and tested by our professional motor manufacturers and related motor system manufacturers in the partnership. The developed three-phase asynchronous motor series are: YS/MS, YL/ML, YE3, YE4, YEJ, YVP and permanent magnet motors. Our products have got a good domestic market and a good fame in more than 30 provinces and cities in China, and now gradually expand the international market.
We have our own experienced R&D team, modern production lines and high-precision testing equipment. The manufacturer strictly implements the ISO9001-2015 quality management system, and all products have been inspected, and have obtained national CCC certification and international CE certification, as well as other relevant international certifications. Our motor products are widely used in different fields such as reducers, hydraulic equipment, lifting equipment, fans, wind power, home appliances, food, clothing, papermaking, packaging, ceramics, printing, chemical industry, animal husbandry machinery, woodworking machinery, agriculture and water conservancy.
We adhere to the business philosophy of “Life, based on quality; Trust, based on honesty; Win-win cooperation”, and insists on giving back to all customers with high-quality products and comprehensive services!

FAQ

1.How about your MOQ and lead time?
Both MOQ and lead time depends on specific products. Generally speaking, it cost 10-30 days.

2.Can I get sample?
Yes. We offer sample motor.

3.Is customized service available?
OEM & ODM both are available. Please inform us with output power, speed rpm, output torque, using voltage and application range.

4. What is your payment term?
30% T/T in advance, 70% balance before shipment
30% T/T in advance, 70% balance 30 days after BL date by ocean, 15 days after AWB date by air, after a long-term stable cooperation.

5. What about warranty?
One year, during the guarantee period, we will supply freely of the easy damaged parts for the possible problems except for the incorrect operation. After expiration, we supply cost spare parts for alternator maintenance.

6.Why us?
* Professional factory for Electric Motor in China
*Safety / Energy Consumption / Superior Life
* Full of export experiences.
* 100% tested before delivery
* A complete set of motor solutions can be provided.
* Perfect performance, low noise, slight vibration, reliable running, good appearance, small volume, light weight and easy maintenance.
* CE/ISO Approved
 

Before Sale After Sale
1 Sample Confirmation 1 Comprehensive service with separate after-sale team
Providing information consulting and technical guidance. 2 Satisfied solution while any problem identified.
3 Packaging can be customized. 3 Exclusive and unique solution provided by professional engineers.
4 Reply to your enquiry in 24 working hours. 4 New craft, new technology and other related advisory services.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal
Speed: Constant Speed
Number of Stator: Single-Phase and Three-Phase
Function: Driving, Control, Driving, Control
Casing Protection: Customized
Number of Poles: 2-12
Samples:
US$ 115/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

What are the safety considerations when working with or around AC motors?

Working with or around AC motors requires careful attention to safety to prevent accidents, injuries, and electrical hazards. Here are some important safety considerations to keep in mind:

  • Electrical Hazards: AC motors operate on high voltage electrical systems, which pose a significant electrical hazard. It is essential to follow proper lockout/tagout procedures when working on motors to ensure that they are de-energized and cannot accidentally start up. Only qualified personnel should perform electrical work on motors, and they should use appropriate personal protective equipment (PPE), such as insulated gloves, safety glasses, and arc flash protection, to protect themselves from electrical shocks and arc flash incidents.
  • Mechanical Hazards: AC motors often drive mechanical equipment, such as pumps, fans, or conveyors, which can present mechanical hazards. When working on or near motors, it is crucial to be aware of rotating parts, belts, pulleys, or couplings that can cause entanglement or crushing injuries. Guards and safety barriers should be in place to prevent accidental contact with moving parts, and proper machine guarding principles should be followed. Lockout/tagout procedures should also be applied to the associated mechanical equipment to ensure it is safely de-energized during maintenance or repair.
  • Fire and Thermal Hazards: AC motors can generate heat during operation, and in some cases, excessive heat can pose a fire hazard. It is important to ensure that motors are adequately ventilated to dissipate heat and prevent overheating. Motor enclosures and cooling systems should be inspected regularly to ensure proper functioning. Additionally, combustible materials should be kept away from motors to reduce the risk of fire. If a motor shows signs of overheating or emits a burning smell, it should be immediately shut down and inspected by a qualified professional.
  • Proper Installation and Grounding: AC motors should be installed and grounded correctly to ensure electrical safety. Motors should be installed according to manufacturer guidelines, including proper alignment, mounting, and connection of electrical cables. Adequate grounding is essential to prevent electrical shocks and ensure the safe dissipation of fault currents. Grounding conductors, such as grounding rods or grounding straps, should be properly installed and regularly inspected to maintain their integrity.
  • Safe Handling and Lifting: AC motors can be heavy and require proper handling and lifting techniques to prevent musculoskeletal injuries. When moving or lifting motors, equipment such as cranes, hoists, or forklifts should be used, and personnel should be trained in safe lifting practices. It is important to avoid overexertion and use proper lifting tools, such as slings or lifting straps, to distribute the weight evenly and prevent strain or injury.
  • Training and Awareness: Proper training and awareness are critical for working safely with or around AC motors. Workers should receive training on electrical safety, lockout/tagout procedures, personal protective equipment usage, and safe work practices. They should be familiar with the specific hazards associated with AC motors and understand the appropriate safety precautions to take. Regular safety meetings and reminders can help reinforce safe practices and keep safety at the forefront of everyone’s minds.

It is important to note that the safety considerations mentioned above are general guidelines. Specific safety requirements may vary depending on the motor size, voltage, and the specific workplace regulations and standards in place. It is crucial to consult relevant safety codes, regulations, and industry best practices to ensure compliance and maintain a safe working environment when working with or around AC motors.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China wholesaler Hot Sale Auto Spare Part Three Phase Asynchronous AC Motor Electric Vehicle Car Motor for Motorcycle Conversion Kit   with Good quality China wholesaler Hot Sale Auto Spare Part Three Phase Asynchronous AC Motor Electric Vehicle Car Motor for Motorcycle Conversion Kit   with Good quality
editor by CX 2024-04-15