Product Description

 

 

 

 

 

 

Recommend view more >>

 

 

Model Number:

CBB65 air conditioner capacitor

Type

Polypropylene film capacitor

Safety approvals:

CQC/VDE/TUV/CL

Approval standard

GB/T3667,EN65712

Climatic category

25/70/21,25/85/21,40/70/21,40/85/21

Rated voltage

150VAC~600VAC(50-60Hz)

Capacitance range

3uf~100uf

Capacitance tolerance

+_5%(J),+_10%(K),+10%(U),-5%(U)

Testing voltage

 

Between terminals

2*Un(VAC)/5s

Between terminals and case

2*Un+1000(VAC)/5s(>=2000VAC)

Insulation Resistance(20)

 

Between terminals

>=2000MΩ,UF(500VDC,5s)

Tangent of loss angle(20)

<=0.002(100Hz)

Class of safety protection

S0/S3

Fault Currency

10,000AFC(UL810)

Place of CHINAMFG

CHINA

Packing

More pieces in 1 inner box or polybag as customer request.

Color

accept customization

Supplier type

OEM factory

Capacitance(uf)

250/300VAC

 

 

400-450VAC

 

 

 

Cylindrical

 

Ocal

Cylindrical

 

Ocal

 

D

H

L*W*H

H

D

L*W*H

10uf

40

55

51.5*31.5*65

30

60

51.5*31.5*65

15uf

40

55

51.5*31.5*65

35

60

/

20uf

40

65

51.5*31.5*65

40

60

51.5*31.5*75

25uf

40

65

51.5*31.5*65

40

60

51.5*31.5*85

30uf

/

/

/

40

70

71.5*45*75

35uf

40

75

71.5*45*75

45

70

/

40uf

/

/

/

45

70

71.5*45*85

45uf

45

75

71.5*45*75

45

80

/

50uf

45

85

71.5*45*85

45

90

71.5*45*100

60uf

45

95

71.5*45*100

50

90

/

What’s a dual run AC capacitor ?
* A capacitor is an electric component that temporarily stores an electrical charge and AC capacitor is a key component to start
air conditioner motors.
* A dual run capacitor supports “TWO” electric motors, 1 section for the condenser fan motor and the other for the compressor
motor. Beacause of technological innovation, the dual run capacitor can saves space by combining 2 capacitors into 1 case.
* Round cylinder-shaped dual run capacitors are commonly used for air conditioning, it can help in the starting of the compressor
and the condenser fan motor.
* Air conditioner capacitor is small in size, lightweight, heat resisting and anti-explosion.

Dual capacitors come in a variety of sizes, depending on the capacitance (µF or MFD) and the voltage.

1. The capacitance (µF or MFD) must be the same or stay within ±6% of its original value. Example: 45 µF cap can be substituted
by 42.3 to 47.7 µF with the same or better voltage ratings capacitor .
2. A 440 volt capacitor can be used in place of a 370 volt capacitor, as it can work better, but the 370 volt capacitor can’t be
used in place of a 440 volt capacitor.It will work for a while or will fail prematurely, because exceeding the capacitor’s
rated voltage will cause the dielectric to break down and the capacitor to short out.

“TIME” to Replace
The Dual Run AC Capacitor needs to be replaced when the following conditions occur:

1. The fan wouldn’t spin – the condenser fan motor maybe died.
2. The air conditioner is making humming sound, but no air flow.
3. Air conditioner stopped cooling – the compressor in the condenser maybe not coming on.

“SUPER EASY” to Install

* First, Shut off power to the A/C at both the thermostat and the breaker box. Secondly, taking out the capacitor.
* What’s important, make sure you know which wire is for which terminal – 3 terminals on the top are labeled “Herm”/”H” for
the compressor motor, “Fan”/”F” for the fan and “C” for the common line.
* Direct replacement, no need to change wiring or adapter.
* Last but not least, self-install will save you a substantial amount of money!

What is a starting capacitor and a running capacitor for a motor?
As we all know, a single-phase AC motor is not like a three-phase motor. It can turn when it is powered. It needs a starting torque to rotate, and the clockwise and anti-clockwise of this torque determines the steering of the motor, and there are many
ways to start. Among them, the capacitor start is one, which is customarily called the start capacitor, and the single-phase motor needs it to rotate smoothly.
However, some single-phase motors have more than 1 capacitor, and some motors have 2 capacitors. Why? Because some motors are equipped with a starting capacitor and a running capacitor, what is going on?
The difference between start capacitors and run capacitors.
Running capacitor: It is connected to the secondary winding to form an alternating magnetic field after phase-shifting the alternating current, and forms an approximately circular elliptical rotating magnetic field with the alternating magnetic field of the main winding. So he can be the same capacitor, but its role is different.
No matter what kind of capacitor, it has a starting effect at the beginning of the motor. However, when the motor reaches about 75% of the rated speed, the starting capacitor is automatically disconnected by the centrifugal switch, and the running capacitor continues to work with the motor. The process of starting the motor is actually the process of “column phase”. Because a single-phase motor is different from a three-phase motor, there is no phase difference, and a rotating magnetic field cannot be generated. The function of the capacitor is to make the starting winding current of the motor lead the running winding by 90 electrical angles in time and space to form a phase difference. Among them, the running capacitor also plays the role of balancing the current between the main and auxiliary windings. Since the starting capacitor works for an instant and a short time, the withstand voltage is required to be above 250V, while the running capacitor needs to work for a long time, and the withstand voltage is required to be above 450V.
The starting capacitor is to make the starting coil of the single-phase motor energized at the time of starting, and then cut off after starting. The running capacitor is to make the motor perform capacitance compensation during the operation, so the starting capacitor cannot be less, and the running capacitor can not be used.
The running capacitor is the starting capacitor used when the press is working normally. When the press starts, it starts the press together with the running capacitor. After the press is turned up, the start capacitor is disconnected. The running and starting capacitors are together, but 1 of the starting capacitors is open, and the starting capacitor is useless when the motor turns. What is the difference between the starting capacitor and the running capacitor? That is the capacity of the starting capacitor is large, generally 2-5 times that of the running capacitor, while the capacity of the running capacitor is small, and the capacity difference between the 2 is huge and easy to distinguish.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Home
Type: Polypropylene Film Capacitor
Between Terminals and Case: 2*Un+1000(VAC)/5s(>=2000VAC)
Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China Custom Wholesale Cbb65 450V 35UF 40UF 50UF AC Air Conditioning Motor Capacitor Sh Capacitor   vacuum pump belt	China Custom Wholesale Cbb65 450V 35UF 40UF 50UF AC Air Conditioning Motor Capacitor Sh Capacitor   vacuum pump belt
editor by CX 2024-05-02